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ABSTRACT: 

ANN process information in asimilar way the human brain does. The network is 
composed of a large number of highly interconnected processing elements (neurons) 
working in paralel to solve a spesific problem. Over the last decades ANN is the most 
popular artificial intelligence technics which used from industry to education, from military to 
medicine. Because of the ANN is a interdicipliner branch, we have to understand its 
arthitecture and structure detailed. 

Especially, learning process in technology education is effective,if it supports 
simulation tools. Education which based on simulator is the most factor effecting learning and 
understanding.Thus, ANN simulator which realized in this study is increased ANN education 
visually. According to this aim, in this study, by the way learning process, we considered 
ANN and realized ANN simulator which includes some components. These components are 
inputs, weights, activation functions, neurons of layer,learning types and network types 
according to help learning ANN visually. 
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I. INTRODUCTION 

Neural networks process information in a similar way the human brain does. The 
network is composed of a large number of highly interconnected processing 
elements(neurones) working in parallel to solve a specific problem. Neural networks learn by 
example. They cannot be programmed to perform a specific task. The examples must be 
selected carefully otherwise useful time is wasted or even worse the network might be 
functioning incorrectly. The disadvantage is that because the network finds out how to solve 
the problem by itself, its operation can be unpredictable. 

There are multitudes of different types of ANNs (Artificial Neural Network). Some of 
the more popular include the multilayer perceptron which is generally trained with the 
backpropagation of error algorithm. Another way of classifying ANN types is by their method 
of learning (or training), as some ANNs employ supervised training while others are referred 
to as unsupervised or self-organizing. Supervised training is analogous to a student guided 
by an instructor. Unsupervised algorithms essentially perform clustering of the data into 
similar groups based on the measured attributes or features serving as inputs to the 
algorithms. This is analogous to a student who derives the lesson totally on his or her own. 
ANNs can be implemented in software or in specialized hardware.  

In section II, we explained the ANN in detail which includes  Modelling a neuron, 
Activation function, Perceptron, Learning rules (Hebb, Hopfield, Delta), Layers of Neurons 
(Backpropagation Algorithms), Teaching an Artificial Neural Network (Supervised learning., 
Unsupervised learning). In section III, we  explained realizing ANN simulator  which has three 
main part (Perceptron, having diffrent learning rules one layers ANN, for supervised learning 
three layer backpropagation algorithms). 
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II. ARTIFICIAL NEURAL NETWORKS 

An ANN is an information processing paradigm that is inspired by the way biological 
nervous systems, such as the brain, process information. It is composed of a large number of 
highly interconnected processing elements (neurones) working in unison to solve specific 
problems. ANNs, like people, learn by example. An ANN is configured for a specific 
application, such as pattern recognition or data classification, through a learning process. 
Learning in biological systems involves adjustments to the synaptic connections that exist 
between the neurones. This is true of ANNs as well. ANN is the type of information 
processing system whose architecture is inspired by the structure of biological neural 
systems based on the following assumptions: 

Characteristics of Neural Networks 

• Each neuron is connected to other neurons by means of interconnections or links with 
an associated weight. 

• Memories are stored or represented in a neural network in the pattern of 
interconnection strengths among the neurons. 

• Information is processed by changing the strengths of interconnections and/or 
changing the state of each neurons. 

• A neural network is trained rather than programmed. 

Strengths of Neural Networks 

• Generalization 

• Self-organization 

• Can recall information based on incomplete or noisy or partially incorrect inputs. 

• Inadequate or volatile knowledge base 

• Performs well in data-intensive applications 

• Data is intrinsically noisy and error-prone  

2.1. ANN history 

The branch of artificial intelligence called neural networks dates back to the 1940s, 
when McCulloch and Pitts [1943] developed the first neural model. This was followed in 1962 
by the perceptron model, devised by Rosenblatt, which generated much interest because of 
its ability to solve some simple pattern classification problems. This interest started to fade in 
1969 when Minsky and Papert [1969] provided mathematical proofs of the limitations of the 
perceptron and pointed out its weakness in computation.  

The last decade, however, has seen renewed interest in neural netivorks, both among 
researchers and in areas of application. The development of more-powerful networks, better 
training algorithms, and improved hardware have all contributed to the revival of the field. 
Neural-network paradigms in recent years include the Boltzmann machine, Hopfield's 
network, Kohonen's network, Rumelhart's competitive learning model, Fukushima's model, 
and Carpenter and Grossberg's Adaptive Resonance Theory model [Wasserman 1989; 
Freeman and Skapura 1991]. The field has generated interest from researchers in such 
diverse areas as engineering, computer science, psychology, neuroscience, physics, and 
mathematics.  



 

 1198 

2.2. Modelling of a Neuron  

To model the brain we need to model a neuron. Each neuron performs a simple 
computation. It receives signals from its input links and it uses these values to compute the 
activation level (or output) for the neuron. This value is passed to other neurons via its output 
links.The input value received of a neuron is calculated by summing the weighted input 
values from its input links. That is ; kk p.Wn =  olur.(1) 

An activation function takes the neuron input value and produces a value which 
becomes the output value of the neuron. This value is passed to other neurons in the 
network.This is summarised in this diagram and the notes in figure 1. 

 
Figure 1. Modelling  of an  Artificial Neuron 

Where; 

 p: Input value; w:Weight ; n:Weighted sum of inputs; f:Aktivation function; a:Output value 

2.3. Activation  Function 

The behaviour of an ANN depends on both the weights and the input-output function 
(activation function) that is specified for the units. This function typically falls into one of three 
categories: linear (or ramp), threshold, sigmoid. For linear units, the output activity is 
proportional to the total weighted output. For threshold units, the output is set at one of two 
levels, depending on whether the total input is greater than or less than some threshold 
value. For sigmoid units, the output varies continuously but not linearly as the input changes. 
Sigmoid units bear a greater resemblance to real neurones than do linear or threshold units, 
but all three must be considered rough approximations.Some common activation functions 
are shown in figure 2. 

 

 
Figure 2 ANN Activation Functions 

These functions can be defined as follows. 

Lin(x)= x;  Sign (x)=+1 if x >= 0, else –1 Sigmoid(x) =1/(1+e-x) 
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2.4. Perceptron 

Early ANNs, usually consisting of a single layer, and using simple threshold functions,  
were called Perceptrons. A typical perceptron type network is shown in figure 3. The 
architecture of a Perceptron consists of a single input layer of many neurodes, and a single 
output layer of many neurodes. The network must also implement the Perceptron learning 
rule for weight adjustment. This learning rule compares the actual network output to the 
desired network output to determine the new weights. 

 
Figure 3  Modelling of Perceptron 

Before a network such as the one presented above can be used, it must be taught  
This is accomplished by altering the weights in such a way that the output from the network 
moves toward the value specified by  the designer for a particular input. This algorithms is 
shown in figure 4. 

Figure 4 Perceptron Learning Algorithms 

2.5. Learning Rules 

There are a variety of learning laws which are in common use. These laws are 
mathematical algorithms used to update the connection weights. Most of these laws are 
some sort of variation of the best known and oldest learning law, Hebb’s Rule. Man’s 
understanding of how neural processing actually works is very limited. Learning is certainly 
more complex than the simplification represented by the learning laws currently developed. 
Research into different learning functions continues as new ideas routinely show up in trade 
publications etc. A few of the major laws are given as an example below. 

Inıtialize [ ]0...0←W  

Until a complete pass through the training set ;Weight  updates do: {  

1→ Select an example ),()( kkk cP=ε and compute kPW * , 

The output of the neuron 1=ka   İf   0* >kPW  

0=  otherwise 

2→ kkk XacWW )( −+← η  

}  WW ←*  
Where 0>= teLearningRaη ;        =kc  Desired Output 
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• Hebb’s Rule 

The first and the best known learning rule was introduced by Donald Hebb. The 
description appeared in his book The organization of Behavior in 1949. This basic rule is: If a 
neuron receives an input from another neuron, and if both are highly active (mathematically 
have the same sign), the weight between the neurons should be strengthened.  

• Hopfield Law 

This law is similar to Hebb’s Rule with the exception that it specifies the magnitude of 
the strengthening or weakening. It states, "if the desired output and the input are both active 
or both inactive, increment the connection weight by the learning rate, otherwise decrement 
the weight by the learning rate." (Most learning functions have some provision for a learning 
rate, or a learning constant. Usually this term is positive and between zero and one.)  

• The Delta Rule 

The Delta Rule is a further variation of Hebb’s Rule, and it is one of the most 
commonly used. This rule is based on the idea of continuously modifying the strengths of the 
input connections to reduce the difference (the delta) between the desired output value and 
the actual output of a neuron. This rule changes the connection weights in the way that 
minimizes the mean squared error of the network.  

2.6. Layers of Neurons 

In the section above, simple networks of one layer were discussed; these networks 
are a subset of a larger class of network called the Feedforward or Associative network. A 
generalised feedforward network can have any number of layers, its distinguishing feature is 
that it has no signal paths which feed data from the outputs back towards the inputs. In other 
words, data only flows in one direction; from the inputs to the outputs. This is in contrast to 
the Feedback or Auto-Associative network in which data can flow back from output to input. 
is shown in figure 5. 

 
Figure 5  Layers Of Neurons 

2.7. Back Propagation 

Back Propagation (BP) is a method for training  multilayer feedforward networks is 
shown in figure 6. It works by training the output layer in the same way as was shown for the 
perceptron, and then propagating the error calculated for these output neurons, back though 
the weights of the net, to train the neurons in the inner (hidden) layers.  
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Its basis is that the state of the network always changes in such a way that the output 
follows the error curve of the network downwards: that is, the error always decreases . This 
idea is called Gradient descent. 

 
Figure 6 Three Layer ANN 

"Back-Propagation" is a mathematical procedure that starts with the error at the 
output of a neural network and propagates this error backwards through the network to yield 
output error values for all neurons in the network. A common form of learning is "trial and 
error".  A "trial" is the output of a system in response to particular stimuli.  An "error" is the 
external reaction to the output of the system that is supplied to the system as some other 
kind of stimulus.  A system capable of "trial and error" learning relies on receiving feedback 
that describes the nature and severity of mistakes.  The system can use the error information 
to make corrections in the way it responds to that particular combination of stimuli in the 
future. 

Back-Propagation yields neuron error values throughout a neural network.  Learning 
occurs when neuron input weights and bias values are adjusted in an attempt to reduce the 
output error for the same stimuli .It should be noted that defining a mechanism for learning 
implicitly defines the nature of phenomena that will frustrate learning. 

First, an input is applied to the network and the output is calculated. The output is 
then compared with the target and an error is calculated, as with the perceptron. In the 
perceptron case the neurons were considered  to be simple threshold units; however, if they 
have a more complex activation function, then the error must be multiplied by the derivative 
of the activation function (for example the sigmoid function). Where BP differs from simple 
perceptron learning is in the training of the hidden layers. The idea is to propagate the value 
of error calculated for the output neurons, back through the weights, to the neurons of the 
hidden layer, and hence calculate a value of error for these. This is done by multiplying the 
value of error from each output layer by the weight connecting that output layer to the hidden 
layer neuron, and adding all the contributions together. Again, if we have an activation 
function, we must multiply by its derivative.The process is then repeated for all the hidden 
layer neurons. 
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2.8  Teaching an Artificial Neural Network 

• Supervised Learning. 

The vast majority of artificial neural network solutions have been trained with 
supervision. In this mode, the actual output of a neural network is compared to the desired 
output. Weights, which are usually randomly set to begin with, are then adjusted by the 
network so that the next iteration, or cycle, will produce a closer match between the desired 
and the actual output. The learning method tries to minimize the current errors of all 
processing elements. This global error reduction is created over time by continuously 
modifying the input weights until an acceptable network accuracy is reached.  

With supervised learning, the artificial neural network must be trained before it 
becomes useful. Training consists of presenting input and output data to the network. This 
data is often referred to as the training set. That is, for each input set provided to the system, 
the corresponding desired output set is provided as well. In most applications, actual data 
must be used. This training phase can consume a lot of time. In prototype systems, with 
inadequate processing power, learning can take weeks. This training is considered complete 
when the neural network reaches an user defined performance level. This level signifies that 
the network has achieved the desired statistical accuracy as it produces the required outputs 
for a given sequence of inputs. When no further learning is necessary, the weights are 
typically frozen for the application. Some network types allow continual training, at a much 
slower rate, while in operation. This helps a network to adapt to gradually changing 
conditions.  

Training sets need to be fairly large to contain all the needed information if the 
network is to learn the features and relationships that are important. Not only do the sets 
have to be large but the training sessions must include a wide variety of data. If the network 
is trained just one example at a time, all the weights set so meticulously for one fact could be 
drastically altered in learning the next fact. The previous facts could be forgotten in learning 
something new. As a result, the system has to learn everything together, finding the best 
weight settings for the total set of facts. For example, in teaching a system to recognize pixel 
patterns for the ten digits, if there were twenty examples of each digit, all the examples of the 
digit seven should not be presented at the same time.  

How the input and output data is represented, or encoded, is a major component to 
successfully instructing a network. Artificial networks only deal with numeric input data. 
Therefore, the raw data must often be converted from the external environment. Additionally, 
it is usually necessary to scale the data, or normalize it to the network's paradigm. This pre-
processing of real-world stimuli, be they cameras or sensors, into machine readable format is 
already common for standard computers. Many conditioning techniques which directly apply 
to artificial neural network implementations are readily available. It is then up to the network 
designer to find the best data format and matching network architecture for a given 
application. After a supervised network performs well on the training data, then it is important 
to see what it can do with data it has not seen before. If a system does not give reasonable 
outputs for this test set, the training period is not over. Indeed, this testing is critical to insure 
that the network has not simply memorized a given set of data but has learned the general 
patterns involved within an application.  

• Unsupervised Learning. 

Unsupervised learning is the great promise of the future. It shouts that computers 
could someday learn on their own in a true robotic sense. Currently, this learning method is 
limited to networks known as self-organizing maps.This promising field of unsupervised 
learning is sometimes called self-supervised learning. These networks use no external 
influences to adjust their weights. Instead, they internally monitor their performance. These 
networks look for regularities or trends in the input signals, and makes adaptations according 
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to the function of the network. Even without being told whether it's right or wrong, the network 
still must have some information about how to organize itself. This information is built into the 
network topology and learning rules.  

An unsupervised learning algorithm might emphasize cooperation among clusters of 
processing elements. In such a scheme, the clusters would work together. If some external 
input activated any node in the cluster, the cluster's activity as a whole could be increased. 
Likewise, if external input to nodes in the cluster was decreased, that could have an 
inhibitory effect on the entire cluster. Competition between processing elements could also 
form a basis for learning. Training of competitive clusters could amplify the responses of 
specific groups to specific stimuli. As such, it would associate those groups with each other 
and with a specific appropriate response. Normally, when competition for learning is in effect, 
only the weights belonging to the winning processing element will be updated.  

2.9  Network Selection 

Because all artificial neural networks are based on the concept of neurons, 
connections and transfer functions, there is a similarity between the different structures or 
architectures or neural networks. The majority of the variations stems from the various 
learning rules and how those rules modify a network's typical topology. The following 
sections outline some of the most common artificial neural networks. They are organized in 
very rough categories of application. these categories are not meant to be exclusive, they are 
merely meant to seperate out some of the confusion over networks architectures and their 
best matches to specific applications. Basically, most applications of neural networks fall into 
the follwing categories:  

• prediction , classification, data association  

Table I ANN Selection Table 

Network 
Type Networks Use for Network 

Prediction • Back-propagation  
• Delta Bar Delta  
• Directed Random Search  
• Higher Order Neural   

       Networks  

Use input values to predict some 
output (e.g. pick the best stocks in the 
market, predict weather, identify 
people with cancer risks etc.) 

Classification • Learning Vector  
       Quantization  
 

Use input values to determine the 
classification (e.g. is the input the 
letter A, is the blob of video data a 
plane and what kind of plane is it 

Data  

Association 

• Hopfield  
• Boltzmann Machine  
• Hamming Network  

Like Classification but it also 
recognizes data that contains errors 
(e.g. not only identify the characters 
that were scanned but identify when 
the scanner isn't working properly) 

 

Table I shows the differences between these network categories and shows which of 
the more common network topologies belong to which primary category. this chart is 
intended as a guide and is not meant to be all inclusive. There are many other network 
derivations, this chart only includes the some of them. Some of these networks, which have 
been grouped by application, have been used to solve more than one type of problem. 
Feedforward back-propagation in particular has been used to solve almost all types of 
problems and indeed is the most popular one.  
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2.10 Applications of Artificial Neural Networks 

Unlike traditional expert systems where a knowledge base and necessary rules have 
to be defined explicitly, neural networks do not need rules instead they generate rules by 
learning from shown examples. This makes ANNs general purpose classification tools to be 
used in pattern recognition and classification systems. Neural networks provide a closer 
approach to human perception and recognition than traditional computing. When inputs are 
noisy or incomplete neural networks can still produce reasonable results. Neural networks 
are used successfully in the following areas.Language Processing (Text-to-speech and 
Speech-to-text applications),Data compression, Security, Image Recognition, Optical 
Character Recognition, Texture Detection and Segmentation, Handwriting recognition, 
Target classification, Industrial inspection, Optimization problems such as travelling 
salesman problem, Signal processing (prediction, system modeling, noise filtering etc.), 
Financial and Economic Modeling ,Control Systems ,Servo Control.  

There are other areas in which neural networks might be applied successfully. They might 
include intelligent e-commerce applications in which customer buying intentions are 
recognized from various interactions of the user with the web site.  

III. REALIZED ARTIFICIAL NEURAL NETWORK SIMULATOR 

 Realized ANN simulator in this study is composed of three structure. Firstly, 
perceptron which includes one and two inputs are realized. Here,input values and activation 
functions (hardlim, hardlims)  of perceptron can changeable and due to this situations output 
values are examined. Such a perceptron is shown in figure 7. 

 

Figure 7  Simulation of One, Two Inputs Perceptron User Screen 

Secondly, an ANN model which has one layer and multi-neron is considered. In this 
model, a simulatör is designed to realize Hebbian, Delta, Perception and Widrow Half 
Learning algorithms. In this simulator, learning algorithms, neuron numbers, neuron inputs 
numbers and activation functions can selected. Such a structure is shown in Figure 8.İnitial 
weight and bias values can be set randomly. When user create input and destination values, 
weight and output matrix modification are seen in each step. Diferantial error between 
destination and output matrix can be examined graphically. 
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Figure 8 Simulation Of Different Learning Rules User Screen. 

 Thirdly, an ANN which has three layer is realized. In this structure, input numbers, 
neuron numbers of each layer, pattern numbers and activation functions (Purelin, Tansig, 
logsig),Learning rate can be selected.  Such a structure is shown in Figure 9.Initialize values 
of weights can be assigned randomly. Input matrices-destination matrices value can be read 
from text file. Result weight matrices, output matrice also can be  saved to the text file. By 
way of learning ANN, realized software supported with graphics interface. In addition to this, 
ANN learning phases are examined graphically and its has help file for ANN . 

 
Figure 9  Simulation of Backpropagation Algorithms User Screen  



 

 1206 

In this study, we considered ANN and realized ANN simulator which help learning 
process and  explained this process according to the inputs, weights, activation functions, 
learning types and outputs.  

IV.CONCLUSION 

As mentioned in this study, ANN is the most applicability AI technics in real world. 
Especially, learning process in technology education is effective,if it supports simulation 
tools. Education which based on simulator is the most factor effecting learning and 
understanding.Thus, ANN simulator which realized in this study is increased ANN education 
visually. That’s way, ANN has to be considered educationally. Aim of the this, ANN Simulator 
used in graduate level class in university. When we compared previous lesson via to 
success, perception and learn, we observed that using that ANN simulator is useful 
educationally.  
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